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Abstract. Promoter region of protein-coding genes are gradually being well 
understood, yet no comparable studies exist for the promoter of long non-coding 
RNA (lncRNA) genes which has emerged as a global potential regulator in multiple 
cellular process and different diseases for human. To understand the difference in 
the transcriptional regulation pattern of these genes, previously, we proposed a 
machine learning based model to classify the promoter of protein-coding genes and 
lncRNA genes. In this study, we are presenting DeepCNPP (deep coding non-coding 
promoter predictor), an improved model based on deep learning (DL) framework to 
classify the promoter of lncRNA genes and protein-coding genes. We used 
convolution neural network (CNN) based deep network to classify the promoter of 
these two broad categories of human genes. Our computational model, built upon 
the sequence information only, was able to classify these two groups of promoters 
from human at a rate of 83.34% accuracy and outperformed the existing model.  
Further analysis and interpretation of the output from DeepCNPP architecture will 
enable us to understand the difference in transcription regulatory pattern for these 
two groups of genes.  
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1. Introduction 

Although the human genome project [1] primarily focused on the protein-coding genes 
exclusively, long non-coding RNA (lncRNA) genes [2], which do not encode a protein, 
later, emerged as a potential global regulator for different cellular processes and have 
shown to be involved in different diseases including cancer [3, 4]. Given the diversity in 
biogenesis for lncRNAs, their low-level expression and conservation make them more 
cryptic than protein-coding genes. Therefore, it becomes more challenging to understand 
their regulation and functional relevance in different pathways and diseases [4]. 
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To better understand the differences between these two groups of genes, many 
computational methods have been developed to distinguish the non-coding regions from 
the coding regions of the genome across multiple species [5]. But very few studies 
focused on comparing the difference in their promoter regions, which is considered as 
the key regulatory region for genes. In order to understand the difference in global 
transcriptional regulatory pattern of protein-coding genes and lncRNA genes, we need to 
investigate their promoter regions thoroughly. To achieve this goal, previously, we 
developed a traditional machine-learning models to classify these two groups of 
promoters using genomics, epigenomics and regulatory information in the promoter 
regions [6]. We used different sequence-related features (k-mer, palindromes, skewness 
etc.), chromatic states [7] and the putative transcription factor binding sites (TFBSs) [8] 
that could bind in the promoter region of these two groups of genes to elucidate their 
differences in transcription regulation. Though gene expression, transcription factors 
(TFs) controlling the genes and epigenetic information are crucial to understand the 
transcription regulatory network of genes, yet there is a scarcity of such information. For 
example, we do not have gene expression data for all cells/tissues in human; we do not 
have ChIP-seq data for all known TFs across all cell types in human. So, it is always 
advantageous to build a computational model using sequence information only so that it 
can work independent of other available factors. Here we interrogated, at genome-wide 
scale, to test the hypothesis that only DNA sequence information of the promoter region 
is well enough to elucidate the underlying pattern of promoter of lncRNA genes from 
protein-coding genes. To reach in conclusion, we set up this problem as a machine 
learning classification framework for classifying two broad groups of gene promoters 
using sequence information only. 

Recently convolutional neural network (CNN) has shown to achieve ground-
breaking results in the classification of images [9]. The examples of using CNN in 
biological problems are increasing in recent time as well [10]. Though we are the first to 
introduce the machine learning model to distinguish the promoter of lncRNA genes and 
protein-coding genes, no deep learning (DL) based system has been developed for the 
classification of promoters from human lncRNA genes and protein-coding genes. 
Therefore, it is unknown whether DL based architecture can achieve reasonable accuracy 
in classifying the promoter of lncRNA genes and protein-coding genes. So, the objective 
of this study is to build a DL based architecture to check the effectiveness of such a 
network structure in this particular problem. Hence, we introduce DeepCNPP (deep 
coding noncoding promoter predictor), the first DL based architecture to classify the 
promoter of these two broad groups of genes using the sequence information of the 
promoter region only. DeepCNPP outperformed the existing model [6] considering all 
evaluation metrics. 

2. Methods 

We downloaded the publicly available promoter dataset from our previous study [6]. The 
dataset contains promoter information of 18,787 protein-coding genes and 18,487 
lncRNA genes. We considered the [-1000, +1000] region of transcription start sites (TSS) 
as the putative promoter region of genes as prescribed in [6]. The promoter sequence was 
fetched from the human genome (hg19 version). Each nucleotide of promoter sequence 
was  encoded using one-hot encoding approach of four length vector, A:(1,0,0,0), 
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C:(0,1,0,0), G:(0,0,1,0) and T:(0,0,0,1). The two-dimensional encoded promoter 
sequences were used as input to build DeepCNPP architecture (Figure 1). 

 
Figure 1. Proposed architecture for DeepCNPP. 

We used one-dimensional convolution operations, commonly used for sequence data 
analysis, in our model. Keeping consistency with the convolution layers the max-pooling 
operation used were also one-dimensional, having size of 4. DeepCNPP consists of two 
inception-like [11] layers (hereafter referred to as composite layers) followed by one 
conventional convolutional layer, and finally, two fully connected layers. Each 
composite layer is a cascade of three convolutional layers with filter size 3, 5, and 8, 
respectively. We used 64 kernels of size 3 and 5, and 32 of size 8. The outputs of these 
convolution layers are then concatenated along the feature axis to produce a feature map 
that acts as the input to the next layer. Using convolutions of multiple sizes in one layer 
helps the network analyze the layer’s input at different scales, and produces a feature 
map for the next layer incorporating information from different visual levels. DeepCNPP 
has two of these composite layers one after another with dropout and max pooling layers 
following each. After these two composite layers, the network has a regular convolution 
layer containing 32 kernels of size 8 with dropout and max-pooling layers following. The 
last two layers of the network are fully connected layers of size 16 and 1 (the final 
classification layer for coding promoter (0) and non-coding promoter (1) prediction), 
respectively. The first fully-connected layer has a dropout layer after it for regularization. 
We used ReLU as the activation function for the inner layers, and sigmoid for the 
classification layer. The dropout rate for the composite and the convolution layers was 
0.4, and for the fully connected layer, 0.5. 

We trained our model using the Adam [12] optimization algorithm using a minibatch 
size of 256. We used the default values for the β1 and β2 parameters for Adam, and used 
the stochastic gradient descent with warm restart [13] as the learning rate scheduler with 
a minimum and maximum learning rate of 3x10-5 and 10-3, respectively. We used Keras 
for implementing the DeepCNPP. The model was trained on GeForce GTX TitanX 
(Pascal) on single GPU machine for 400 epochs. Each epoch took around 40 seconds to 
complete. We used 10-fold cross validation to evaluate the performance of our model. 
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3. Results & Discussions 

In the training process of DeepCNPP, we considered the promoter regions of lncRNA 
genes and protein-coding genes as positive and negative class respectively. We used the 
following metrics to evaluate the performance of the model: Sensitivity= (TP)/(TP+FN), 
Specificity = (TN)/(FP+TN), Accuracy = (TP+TN)/(TP+FN+FP+TN), where TP, FN, 
FP, TN stand for true positive, false negative, false positive and true negative respectively. 
Using 10 fold cross-validation, we achieved 83.88% sensitivity, 82.81% specificity, and 
83.34% accuracy (see Table 1). From Table 1 we can notice that DeepCNPP 
outperformed the existing model in all evaluation metrics. 
Table 1. Summary of model performance for DeepCNPP and the previous model. 

Model Sensitivity (%) Specificity (%) Accuracy (%) 
Previous model [6] 82.77 80.60 81.69 

DeepCNPP 83.88 82.81 83.34 

4. Conclusion 

We developed DeepCNPP, the first deep CNN based architecture to classify the promoter 
of lncRNA genes and protein-coding genes from human and it outperformed the existing 
model in all evaluation metrics. In future, we will investigate the output from different 
filters at different layers of CNN to interpret the model. The interpretation of the model 
will help us to better understand the transcription regulatory pattern of these two groups 
of genes. In addition to improving the proposed methods, we will extend this for other 
model organisms. 
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