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Abstract.  Human  genes  often,  through  alternative  splicing  of  pre-messenger
RNAs, produce multiple  mRNAs and protein isoforms that may have similar or
completely different functions. Identification of splice sites is, therefore, crucial to
understand  the  gene  structure  and  variants  of  mRNA  and  protein  isoforms
produced by the primary RNA transcripts. Although many computational methods
have been developed to detect the splice sites in humans, this is still substantially a
challenging problem and further improvement of the computational model is still
foreseeable.  Accordingly,  we  developed  DeepDSSR  (deep  donor  splice  site
recognizer), a novel deep learning based architecture, for predicting human donor
splice  sites.  The  proposed  method,  built  upon  publicly  available  and  highly
imbalanced benchmark dataset, is comparable with the leading deep learning based
methods for detecting human donor splice sites. Performance evaluation metrics
show that  DeepDSSR  outperformed  the existing deep learning  based methods.
Future work will  improve the predictive capabilities  of our model, and we will
build a model for the prediction of acceptor splice sites. 
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1. Introduction 

More  than  90%  of  mammalian  genes  are  believed  to  be  processed  through  an
alternative splicing mechanism, which is crucial to understand the gene structure and
transcript  variants  [1].   The exon-intron/intron-exon boundaries,  where  the splicing
occurs, are called splice sites (SS), and introns are cut out from the pre-mRNA in the
SS region  [1]. The SS at the exon-intron boundary is called donor SS (DSS), and a
highly conserved dinucleotide of GT is observed at the intron start side. The SS at the
intron-exon boundary is called acceptor SS, and a highly conserved dinucleotide of AG
is observed at the intron end side. However, SS identified by read aligner is not always
reliable as there is a high chance of false mapping of short reads over a large reference
genome  [2]. Therefore absolutely precise computational model for identifying SS is
necessary to identify the accurate gene structure and their transcript variants.
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There  are  many existing methods that  use  traditional  machine learning methods to
predict human DSS [3-6];  they perform reasonably well. Recently deep convolutional
neural  networks  (CNNs)  have  shown  to  achieve  ground-breaking  results  in  the
classification of images [7]. The examples of using CNN for biological problems have
increased recently, and in many cases, deep learning (DL) methods have been shown to
generate  more  accurate  results  than traditional  hand-curated feature-based  machine
learning  methods [8].  Based  on  our  literature  search,  we  found  three  DL  based
architectures to predict the DSS. Naito developed DSSP, which used CNN and long
short-term memory (LSTM) [9] based architecture to predict the DSS [10]. Zhang et al.
developed DeepSplice, a CNN based model, to predict the human DSS [11]. Du et al.
developed DeepSS, a two-layer CNN based architecture to predict DSS from humans
and other organisms [12]. Naito and Zhang et al., both groups have used 1:10 ratio of
true:false DSS and Due et al. used a ratio of 1:5 of true:false DSS sequence to report
the model performance.  

In this study, we have developed a novel deep learning architecture, DeepDSSR (deep
donor splice site recognizer), using CNN [7] and bidirectional LSTM (BLSTM) [9] to
predict  the  donor  splice  sites  in  human.  Considering  several  metrics  of  model
evaluation,  DeepDSSR,  outperformed  the  existing  DL  based  models  in  predicting
human DSS.

2. Methods

We collected publicly available  human DSS dataset  from HS3D  [13].  This dataset
contains information on 2,796 true  DSS and 90,924 false DSS.  The length of each
sequence is 140 nucleotides and the conserved GT dinucleotide resides at the 71st and
72nd position of each sequence. Since this is an imbalanced dataset, and previously
published DL based methods [10-12] used true/false DSS ratios of 1:1, 1:5, or 1:10 for
evaluating their models, we also used these three ratios in our evaluation to compare
the performance of our model to the existing DL based models. 

Our first step was to encode each input sequence using one-hot encoding, where each
nucleotide of DNA was represented  by a vector of length four, A:(1,0,0,0), C:(0,1,0,0),
G:(0,0,1,0) and T:(0,0,0,1). These two-dimensional encoded sequences were then used
as an input to the DeepDSSR architecture (Figure 1) for training and validation. 



Figure 1: Proposed architecture for DeepDSSR

Our proposed network architecture consists of four layers, listed here in the order they
are applied to the input: a pair of Inception-like  [14] layers (hereafter referred to as
composite  layers),  one  conventional  convolutional  layer,  a  BLSTM, and two  fully
connected layers which include the  output  layer.  Each composite  layer consists  of
three, parallel one-dimensional  convolution layers with a  filter size of  3, 5, and 8,
respectively. We used 64 kernels of size 3 and 5 and 32 of size 8. 

We used two composite layers one after another with dropout and max-pooling layers
for dimensionality reduction and regularization, respectively. After the two composite
layers, a regular one-dimensional convolution layer with 64 kernels of size 8 was added
into the network. We then add a dropout and a max-pooling layer. The next module,
BLSTM, analyzes the output of this convolutional layer from two directions to discover
left-to-right and right-to-left patterns that influence the label of  this DNA sequence.
The  last  two  layers  of  the  network  are  fully  connected  layers  of  size  16  and  1,
respectively.  The  final  layer  is  for  classification:  true  DSS  (1)  and  false  DSS (0)
predictions.  The  first  fully-connected  layer  also  has  a  dropout  layer  after  it  for
regularization.  We  used  ReLU  as  the  activation  function  for  the  inner  layers  and
sigmoid for the classification layer. The dropout rates for the two composite layers, the
convolution layer, BLSTM layer, and the first fully-connected layer, are 0.4, 0.5, 0.6,
0.25, and 0.70, respectively. The max-pooling layers we used were one-dimensional
and had a kernel size of 2. 

We trained our model using the Adam [15] optimization algorithm and binary cross-
entropy loss. We used the default values for the β1 (0.9) and β2 (0.999) parameters for
the  optimizer  and used  stochastic  gradient  descent  with  warm  restart   [16] as  the
learning rate scheduler with a minimum and maximum learning rate of 3x10-5 and 10-3,
respectively, and a cycle length of 5 epochs. We used a batch size of 512.

We used Keras  for  implementing the  DeepDSSR.  The model  was  trained for  300
epochs on a single GPU machine having a GeForce GTX TitanX (Pascal). Each epoch
took between 2 to 20 seconds to complete, depending on the version of the dataset (1:1,
1:5, or 1:10).

3. Results & Discussions



In the training process of DeepDSSR, we considered the true DSS and false DSS as the
positive and negative class, respectively. To evaluate the performance of the model we
used  the  following  three  evaluation  metrics  that  were  considered  for  most  of  the
existing  DL  based  models,  Sensitivity  (Sn)  =  (TP)/(TP+FN),  Specificity  (Sp)=
(TN)/(FP+TN), and Matthew’s Correlation coefficient (MCC):

MCC=(TP∗TN−FP∗FN )/√(TP+FP)(TP+FN)(TN +FP )(TN+FN ),
where TP, FN, FP, and TN stand for true positive, false negative, false positive, and
true negative, respectively. The performance of the model was evaluated using  10-fold
cross-validation (see Table 1).  

Table 1. Performance of DeepDSSR and other existing DL based tools for human DSS prediction. *: Since
the  value of these  metrics  were not explicitly  mentioned in  the  article  [12],  the  values  shown here  are
approximated through visual inspection from “Figure 4” of the corresponding article. NA: Not available in
the literature

Model (data ratio) Sensitivity Specificity MCC 
DeepSplice (1:1) NA NA NA

DSSP (1:1) 97.88 95.36 93.33
DeepSS* (1:1) 97.50 92.50 91.00

DeepDSSR (1:1) 97.50 96.42 93.93
DeepSS* (1:5) 95.50 97.50 90.50

DeepDSSR (1:5) 93.57 98.21 90.88
DeepSplice (1:10) 95.71 93.76 NA

DSSP (1:10) 90.31 98.75 87.99
DeepSS* (1:10) NA NA NA

DeepDSSR (1:10) 91.43 98.85 89.15

From Table 1, we can observe that for the dataset with 1:1, 1:5 and 1:10 ratios, our
model  achieved  93.33,  90.88,  89.15  MCC,  respectively,  and  it  outperformed,
considering MCC as an evaluation metric, all the existing DL based models [10-12] for
all  three  data  sets  subsampled  at  the  same  ratio.  Additionally,  for  1:1  dataset,
DeepDSSR outperformed all  the  existing methods  in  terms of  all  three  evaluation
metrics (MCC, Sn and Sp). For 1:5 and 1:10 ratio datasets, DeepDSSR achieved a Sp
that surpasses all the existing methods’ corresponding metric but at the cost of ~2% Sn
for the 1:5 dataset. For the 1:10 dataset, our model outperformed DSSP in terms of Sn.

4. Conclusion 
The paper introduced a new deep learning architecture, namely DeepDSSR, for  the
prediction of  human donor splice sites. Experimental results were presented, which
show  that  DeepDSSR outperforms  existing  DL  models  in  terms  of  MCC  and
sensitivity. Future work will focus on improving the performance of DeepDSSR and
building a new model for the prediction of acceptor splice sites. 
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